Treating The Tofu Wastewater (TWW) using a Green Technology of Microbial Fuel Cell (MFC) System

Ibdal Satar, Adi Permadi


Tofu is one of the favorable food products that is produced from soybeans. It can be easily produced, contains high nutrition, is cheap, and its raw material is abundant. Unfortunately, a lot of wastewaters are generated during the tofu production process. Generally, tofu wastewater (TWW) contains high organic pollutants which can reduce the water quality when it is directly discharged into the river. This work tries to reduce the organic pollution levels in TWW by using a green technology of microbial fuel cell (MFC) system. The eciency of TWW treatment was determined based on the reduction of chemical oxygen demand (COD) and biological oxygen demand (BOD) levels, decrement of total suspended solid (TSS) and pH changes. In addition, the amount of the electrical generated by MFC during the TWW treatment was investigated as a value added. The results showed that maximum COD and BOD removals were obtained 60.2 ± 2.0% and 61.5 ± 7.6%, respectively. Whereas, the decrement of TSS was observed at 42.7 ± 1.6%. Moreover, the electrical generation involves the current density the power and of MFC were obtained 389.9 ± 23.0 mA/m2 and 110.8 ± 9.1 mW/m2, respectively. These results indicate the MFC could be used to treat the TWW and generate the electrical power at the same time.


Amerian, T., Farnood, R., Sarathy, S. & Santoro, D. (2020). Effects of total suspended solids, particle size, and effluent temperature on the kinetics of peracetic acid decomposition in municipal wastewater. Water Sci Technol 80(12): 2299–2309.

Carvalho, F., Prazeres , A. R. & Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Sci Total Environ 445-446: 385-396.

Corzo-Martínez, M., García-Campos, G., Montilla, A. & Moreno, F. J. (2016). Tofu whey permeate is an efficient source to enzymatically produce prebiotic fructooligosaccharides and novel fructosylated ?-Galactosides. J Agric Food Chem 64(21): 4346-4352.

Dewi, A. K., Djajakirana, G. & Santosa, D. A. (2020). Potensi limbah tahu untuk menghasilkan listrik pada tiga model sistem microbial fuel cell (MFC) J Il Tan Lingk 22(1): 29-34.

Faisal, M., Gani, A., Mulana, F. & Daimon, H. (2016). Treatment and utilization of industrial Tofu waste in Indonesia. Ajchem 28(3): 501-507.

Fildzah, A., Zaman, B. & Purwono (2017). Pemanfaatan Sistem microbial fuel cell (MFC) sebagai sumber energi listrik alternatif pada pengolahan COD dalam lindi menggunakan rumput belulang (Eleusine Indica). Journal Teknik Lingkungan 6(2): 1-10.

He, W., Jin, W., Wang, Q. & Feng, Y. (2021). Electron flow assisted COD removal in wastewater under continuous flow conditions using a microbial electrochemical system. Sci Total Environ 776: 145978.

Hermawan, K. G. V., Djaenudin & Sururi, M. R. (2014). Pengolahan air limbah industri tahu menggunakan sistem double chamber microbial fuel cell. Jurusan Teknik Lingkungan 1(2): 1-9.

Kambuaya, B. (2014). Baku Mutu Air Limbah. In Baku Mutu Air Limbah Bagi Usaha dan/tau Pengolahan Kedelai, Vol. 5, 47 (Ed M. o. Environmental). Jakarta: Ministry of Environmental

Kambuaya, B. (2019).Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.16/Menlhk/Setjen/Kum.1/4/2019 Tentang Baku Mutu Air Limbah. Vol. P.16, 1-85 (Ed M. L. H. d. K. R. Indonesia). Jakarta: Menteri Lingkungan Hidup Republik Indonesia.

Logan, B. E., Hamelers, B., Rozendal, R., SchroDer, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environ Sci Technol 40(17): 5181-5192.

Malekmohammadi, S. & Mirbagheri, S. A. (2021). A review of the operating parameters on the microbial fuel cell for wastewater treatment and electricity generation. Water Sci Technol 84(6): 1309-1324.

Owusu-Agyeman, I., E, P. & Cetecioglu, Z. (2020). Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. Waste Manage 12: 30-39.

Pham, H. T., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., van Oostveldt, P., Verbeken, K., Rabaey, K. & Verstraete, W. (2008). High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microbiol Biotechnol 1(6): 487–496.

Putra, H. E., Permana, D., Putra, A. S., Djaenudin & Haryadi, H. R. (2020). Pemanfaatan sistem microbial fuel cell dalam menghasilkan listrik pada pengolahan air limbah industri pangan. Pusat Penelitian Kimia Lembaga Ilmu Pengetahuan Indonesia: 1-9.

Qiu, Y., Zu, Y., Song, C., Xie, M., Qi, Y. & Kansh, Y. (2019). Soybean processing wastewater purification via Chlorella L166 and L38 with potential value-added ingredients production. Bioresour Technol Reo 7: 100195

Rosa, P. R. F., Santos, S. C. & Silva, E. L. (2014). Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. Int J Hydrogen Energy 39: 1288-1296.

Royani, S., Fitriana, A. S., Putri Enarga, A. B. P., Zufrialdi, H. & Bagaskara (2021). Kajian cod dan bod dalam air di lingkungan tempat pemrosesan akhir (TPA) sampah kaliori kabupaten banyumas. Jurnal Sains dan Teknologi Lingkungan 13(1): 40-49.

Ruhmawati, T., Sukandar, D., Karmini, M. & Tatang, R. S. (2017). Penurunan kadar total suspended solid (tss) air limbah pabrik tahu dengan metode fitoremediasi. Jurnal Permukiman 12(1): 25-32.

Satar, I., Daud, W. R. W., Kim, B. H., Somalu, M. R. & Ghasemi, M. (2017). Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose Energy 139: 1188-1196.

Satar, I., Daud, W. R. W., Kim, B. H., Somalu, M. R., Ghasemi, M., Bakar, M. H. A., Jafary, T. & Timmiati, S. N. (2018). Performance of titanium–nickel (Ti/Ni) and graphite felt-nickel (GF/Ni) electrodeposited by Ni as alternative cathodes for microbial fuel cells. JTICE 89: 67-76.

Sayow, F., Polii, B. V. J., Tilaar, W. & Augustine, K. D. (2020). Analisis kandungan limbah industri tahu dan tempe rahayu di Kelurahan Uner Kecamatan Kawangkoan Kabupaten Minahasa. Agri-Sisioekonomi 16(2): 245-252.

Seluy, L. G. & Isla, M. A. (2014). A process to treat high-strength brewery wastewater via ethanol recovery and vinasse fermentation. Ind Eng Chem Res 53: 17043-17050.

Soto, M. F., Diaz, C. A., Zapata, A. M. & Higuita, J. C. (2020). BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation Biochem Eng J 176: 108191.

Stein, N. E., Hamelers, H. V. M., van Straten, G. & Keesman, K. J. (2012). Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensor 2: 255-268.

Wang, A., Sun, D., Cao, G., Wang, H., Ren, N., Wu, W. M. & Logan, B. E. (2011). Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102: 4137-4143.

Wang, S.-K., Wang, X., Tian, Y.-T. & Cui, Y.-H. (2020). Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. Sci Total Environ 710: 136448.

Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V. & Rahimi, Z. (2017). High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane. Energy 125: 427-438.


Ibdal Satar (Primary Contact)
Adi Permadi
Satar, I., & Permadi, A. . (2022). Treating The Tofu Wastewater (TWW) using a Green Technology of Microbial Fuel Cell (MFC) System. Indonesian Journal of Environmental Management and Sustainability, 6(1), 1-6.
Copyright and license info is not available

Article Details