Evaluation of Wanggu Watershed Carrying Capacity on Water System Indicators in Southeast Sulawesi, Indonesia
Abstract
The water system or hydrological indicators determine the good and bad of a watershed’s carrying capacity. The hydrological indicators include discharge fluctuations, annual flow coefficient, sediment load, flood frequency, and water use index. The purpose of this study was to evaluate the carrying capacity of the Wanggu watershed based on hydrological indicators. The method used is the score and weight method for all hydrological indicator data in accordance with the watershed evaluation guidelines for hydrological indicators. The research data is sourced from primary data and secondary data. Primary data comes from direct observation, while secondary data comes from agencies related to this research. Data analysis using Microsoft Excel in monthly and annual data analysis by producing tables and figures. The results of this study indicate that fluctuations in discharge or the regime coefficient of the Wanggu River Basin are 96.45 which are classified as high, as well as erosion and surface runoff, namely sediment load conditions of 19.73 which are also included in the high category. While the value of the annual flow coefficient is 0.32, the average frequency of flooding every year occurs once in two years and the water use index is 0.69. The three parameters are categorized as being in the middle class. From the accumulated weights and scores of all water system indicator parameters, a value of 111.25 is included in the bad class category. So the Wanggu watershed has a poor carrying capacity value from the water management indicator.
References
Alwi, L., Marwah, S., and Akmal. (2021). Spatial analysis of flood-prone areas and harvest failures in the Wanggu Southeast Sulawesi Watershed. In IOP Conference Series: Earth and Environmental Science (Vol. 681). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/681/1/012029.
Alwi, L. O., Marwah, S., and Astriwana. (2021). The study of forest land use on land characteristics and soil hydrological characteristics in the Wanggu Watershed, Southeast Sulawesi. In IOP Conference Series: Earth and Environmental Science (Vol. 800). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/800/1/012045.
Ariyani, D., Mohammad Yanuar Jarwadi Purwanto, Euis Sunarti, and Perdinan. (2022). Contributing Factor Influencing Flood Disaster Using MICMAC (Ciliwung Watershed Case Study). Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 12(2), 268–280. https://doi.org/10.29244/jpsl.12.2.268-280.
Arsyad, S. (2010). Konservasi Tanah dan Air. In Intitut Pertanian Bogor. https://repository.ipb.ac.id/handle/123456789/42667?show=full
Asdak, C. (2014). Hidrologi dan Pengelolaan Daerah Aliran Sungai. UGM, Press.
Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A., and Geneletti, D. (2022). Modeling the supply, demand, and stress of water resources using ecosystem services concept in Sirvan River Basin (Kurdistan-Iran). Water Supply, 22(3), 2816–2831.
https://doi.org/10.2166/WS.2021.436.
Bandrang, D. D., Sa’Diyah, H., Suparmin, and Sjah, T. (2021, December 2). Analysis of water condition in Dodokan watershed, Lombok, Indonesia. IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/913/1/012054.
Bannatyne, L. J., Waal, B. W. Van Der, Foster, I. D. L., and Rowntree, K. M. (2022). Suspended sediment load estimation in a severely eroded and data poor catchment. March, 1–19. https://doi.org/10.1002/hyp.14730.
Basri, H., Syakur, S., Azmeri, A., and Fatimah, E. (2022). Floods and their problems: Land uses and soil types perspectives. IOP Conference Series: Earth and Environmental Science, 951(1). https://doi.org/10.1088/1755-1315/951/1/012111.
Be?vá?, M. (2006). Sediment Load and Suspended Sediment Concentration Prediction. Soil and Water Research, 1(1), 23–31. https://doi.org/10.17221/6502-swr.
Berhanu, B., Seleshi, Y., Demisse, S. S., and Melesse, A. M. (2015). Flow regime classification and hydrological characterization: A case study of Ethiopian rivers. Water (Switzerland), 7(6), 3149–3165. https://doi.org/10.3390/w7063149.
Bian, G., Du, J., Song, M., Zhang, X., Zhang, X., Li, R., Wu, S., Duan, Z., and Xu, C. Y. (2020). Detection and attribution of flood responses to precipitation change and urbanization: A case study in Qinhuai River Basin, Southeast China. Hydrology Research, 51(2), 351–365. https://doi.org/10.2166/nh.2020.063.
Bower, L. M., Peoples, B. K., Eddy, M. C., and Scott, M. C. (2022). Quantifying flow–ecology relationships across flow regime class and ecoregions in South Carolina. Science of the Total Environment, 802. https://doi.org/10.1016/j.scitotenv.2021.149721
Cao, Z., Wang, S., Luo, P., Xie, D., and Zhu, W. (2022). Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. Water (Switzerland), 14(9). https://doi.org/10.3390/w14091502.
Chalise, D.R., Sankarasubramanian, A., and Ruhi, A. (2021). Dams and Climate Interact to Alter River Flow Regimes Across the United States. Earth’s Future, 9(4). https://doi.org/10.1029/2020EF001816.
Che, X., Jiao, L., Qin, H., and Wu, J. (2022). Impacts of Climate and Land Use/Cover Change on Water Yield Services in the Upper Yellow River Basin in Maqu County. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610363.
Chen, Y., Zhang, P., Zhao, Y., Qu, L., Du, P., and Wang, Y. (2022). Factors Affecting Runoff and Sediment Load Changes in the Wuding River Basin from 1960 to 2020. Hydrology, 9(11). https://doi.org/10.3390/hydrology9110198.
Dadson, S. J., Hall, J. W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., Heathwaite, L., Holden, J., Holman, I. P., Lane, S. N., O’Connell, E., Penning-Rowsell, E., Reynard, N., Sear, D., Thorne, C., and Wilby, R. (2017). A restatement of the natural science evidence concerning catchment-based “natural” flood management in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2199). https://doi.org/10.1098/rspa.2016.0706.
Deng, L., Yin, J., Tian, J., Li, Q., and Guo, S. (2021). Comprehensive evaluation of water resources carrying capacity in the han river basin. Water (Switzerland), 13(3). https://doi.org/10.3390/w13030249.
Fadlin, F., Thaha, M. A., Maricar, F., and Hatta, M. P. (2022). Spatial Modeling For Flood Risk Reduction In Wanggu Watershed, Kendari. International Journal of Engineering Trends and Technology, 70(12), 219–226. https://doi.org/10.14445/22315381/IJETT-V70I12P222.
Ganiyu, H., and Adeogun, N. (2020). Assessment of Water Resources Availability and Demand in Malete Watershed ,. Nigerian Research Journal of Engineering and Environmental Sciences, 4(2), 667–674.
Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., and Srivastav, S. K. (2019). Human-induced land use land cover change and its impact on hydrology. HydroResearch, 1, 48–56. https://doi.org/10.1016/j.hydres.2019.06.001.
Getu Engida, T., Nigussie, T. A., Aneseyee, A. B., and Barnabas, J. (2021). Land Use/Land Cover Change Impact on Hydrological Process in the Upper Baro Basin, Ethiopia. Applied and Environmental Soil Science, 2021. https://doi.org/10.1155/2021/6617541.
Golosov, V., and Tsyplenkov, A. (2021). Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region. Water, 1–21, https://doi.org/10.3390/w13223173.
Gunawan, T. A., Daud, A., Haki, H., and Sarino. (2019). The Estimation of Total Sediments Load in River Tributary for Sustainable Resources Management. IOP Conference Series: Earth and Environmental Science, 248(1). https://doi.org/10.1088/1755-1315/248/1/012079.
Gusarov, A. V., Sharifullin, A. G., and Komissarov, M. A. (2021). Contemporary long-term trends in water discharge, suspended sediment load, and erosion intensity in river basins of the north caucasus region, sw russia. Hydrology, 8(1), 1–31. https://doi.org/10.3390/hydrology8010028.
Gwapedza, D., Nyamela, N., Hughes, D. A., Slaughter, A. R., Mantel, S. K., and van der Waal, B. (2021). Prediction of sediment yield of the Inxu River catchment (South Africa) using the MUSLE. International Soil and Water Conservation Research, 9(1), 37–48. https://doi.org/10.1016/j.iswcr.2020.10.003.
Hasan, H. H., Mohd Razali, S. F., Muhammad, N. S., and Ahmad, A. (2021). Hydrological Drought across Peninsular Malaysia: Implication of Drought Index. Natural Hazards and Earth System Sciences Discussions, June, 1–28. https://doi.org/10.5194/nhess-2021-176.
Hikmat, R. R., and Marselina, M. (2021). Application of Watershed Carrying Capacity and Sustainability Index (Case Study: Cimahi Sub-Watershed). In IOP Conference Series: Earth and Environmental Science (Vol. 940). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/940/1/012030.
Juniati, A. T., Kusratmoko, E., and Sutjiningsih, D. (2021). Potential Water Availability Estimation of Water Resources Carrying Capacity for Bogor City Spatial Plan. Journal of Geography of Tropical Environments, 5(1), 1–16. Retrieved from www.jglitrop.ui.ac.id%0AEstimation.
Kandari, A. M., Baja, S., Ala, A., Kaimuddin, Kasim, S., and Taufik, Y. (2019). Promoting sustainable agricultural management through spatio temporal optimization of food crop land based on pedo-agroclimate at Kalalasi region, Southeast Sulawesi, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 383). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/383/1/012005.
Karmakar, S., Simonovic, S. P., Peck, A., and Black, J. (2010). An Information System for Risk-Vulnerability Assessment to Flood. Journal of Geographic Information System, 02(03), 129–146. https://doi.org/10.4236/jgis.2010.23020.
Kasim, S., Rianse, U., Iswandi, M., and Kandari, A.M., (2020). Spatial Analysis of Flooding Hazard and It’s Implication To Watershed Ecosystem Resilience (A Case Study From Wanggu Watershed Eastern Indonesia, 7(2): DOI- 10.5281/zenodo.3688807.
Kumar, N., Singh, S. K., Singh, V. G., and Dzwairo, B. (2018). Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth Systems and Environment, 4(1), 295–310. https://doi.org/10.1007/s40808-018-0425-1.
Lallam, F., Megnounif, A., and Ghenim, A. N. (2018). Estimating the runoff coefficient using the analytic hierarchy process. Journal of Water and Land Development, 38(1), 67–74. https://doi.org/10.2478/jwld-2018-0043.
Lilis Handayani, Y., Siswanto, Sujatmoko, B., and Oktavia, G. (2019). Stream’s regime coefficient in upstream Rokan watershed of Riau Province. MATEC Web of Conferences, 276, 04013. https://doi.org/10.1051/matecconf/201927604013.
Liu, Z., Fagherazzi, S., Liu, X., Shao, D., Miao, C., Cai, Y., Hou, C., Liu, Y., Li, X., and Cui, B. (2022). Long-term variations in water discharge and sediment load of the Pearl River Estuary: Implications for sustainable development of the Greater Bay Area. Frontiers in
Li, W., Wang, W., Wu, Y., Quan, Q., Zhao, S., and Zhang, W. (2022). Impact of Human Activities on Hydrological Drought Evolution in the Xilin River Basin. Atmosphere, 13(12). https://doi.org/10.3390/atmos13122079.
Machado, R. E., Cardoso, T. O., and Mortene, M. H. (2022). Determination of runoff coefficient (C) in catchments based on analysis of precipitation and flow events. International Soil and Water Conservation Research, 10(2), 208–216. https://doi.org/10.1016/j.iswcr.2021.09.001
Mahmud, Aziz, A., Wijaya, D., Wahyudi, Nugroho, B., and Melanesia, D. (2023). Biophysical characteristics of Wosi Watershed area in Manokwari Regency, Indonesia. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 13(1), 88–101. https://doi.org/10.29244/jpsl.13.1.88-101
Mahmud, Kusumandari, A., Sudarmadji, and Supriyatno, N. (2018). A study of flood causal priority in Arui watershed, Manokwari Regency, Indonesia. Jurnal Manajemen Hutan Tropika, 24(2), 81–94. https://doi.org/10.7226/jtfm.24.2.81.
Marwah, S., and Alwi, L. O. (2014). Analysis of the Impact of Land Use Change on Tidal Flood in Kendari City. International Journal of Applied Science and Technology, 4(7), 103–114. Retrieved from www.ijastnet.com.
Muzdalifah, S., Qubayla, F., and Khaidir, S. (2021). Management Strategy of Sub-Watersheds Affected By Flooding In Banjar District, South of Kalimantan. International Journal of Politic, Public Policy and Environmental Issues, 1(02), 126–134. https://doi.org/10.53622/ij3pei.v1i02.33.
Naharuddin, N., Sadeghi, S. M. M., Malik, A., Rosyid, A., and Ahyauddin, A. (2021). Peak discharge estimation to evaluate and monitor the gumbasa watershed performance, central sulawesi, indonesia. Agricultural Engineering International: CIGR Journal, 23(3), 31–41.
Onwuka, I. S., Scinto, L. J., and Mazdeh, A. M. (2021). Comparative use of hydrologic indicators to determine the effects of flow regimes on water quality in three channels across southern florida, usa. Water (Switzerland), 13(16). https://doi.org/10.3390/w13162184.
Pacheco, F. A. L., and Fernandes, L. F. S. (2020, December 1). Watersheds, anthropogenic activities and the role of adaptation to environmental impacts. Water (Switzerland). MDPI AG. https://doi.org/10.3390/w12123451.
Pramadita, K. G., Suryadi, E., and Kendarto, R. (2021). Analisis Status Daya Dukung Air Di Sub DAS Cikeruh Menggunakan Metode Soil Conservation Curve Number ( Scs-Cn ) ( The Analysis of Water Carrying Capacity Status in Cikeruh Sub-Watershed , using the Soil Conservation Service Curve Number ( SCS-CN ) Method. Agritechno Jurnal Teknologi Pertanian, 14(02), 98–105.
Prasad, V., Yousuf, A., and Sharma, N. (2020). Hydrological modeling for watershed management. Journal of Natural Resource Conservation and Management, 1(1), 29. https://doi.org/10.51396/anrcm.1.1.2020.29-34.
Pourfallah Koushali, H., Mastouri, R., and Khaledian, M. R. (2021). Impact of Precipitation and Flow Rate Changes on the Water Quality of a Coastal River. Shock and Vibration, 2021. https://doi.org/10.1155/2021/6557689.
Rafsanjani, H. (2017). Sediment Transport Analysis of Sesayap River, Malinau District, North Kalimantan. Journal of the Civil Engineering Forum, 3(3), 149. https://doi.org/10.22146/jcef.27239.
Rana, V. K., and Suryanarayana, T. M. V. (2021). Estimation of flood influencing characteristics of watershed and their impact on flooding in data-scarce region. Annals of GIS, 27(4), 397–418. https://doi.org/10.1080/19475683.2021.1960603.
Restele, L. O., Saleh, F., Iradat, L. M., Karim, J., and Khairisa, N. H. (2022). Evaluation of land resilience against natural disasters using ecosystem services approach in Kendari City, Southeast Sulawesi, Indonesia. Jurnal Pendidikan Geografi, 27(2), 188–198. https://doi.org/10.17977/um017v27i22022p188-198.
Rogers, C. S., and Ramos-Scharrón, C. E. (2022). Assessing Effects of Sediment Delivery to Coral Reefs: A Caribbean Watershed Perspective. Frontiers in Marine Science, 8(January), 1–23. https://doi.org/10.3389/fmars.2021.773968.
Rolia, E., Sutjiningsih, D., and Siswantining, T. (2021). Modeling Watershed Health Assessment for Five Watersheds in Lampung Province , Indonesia. 6(1), 99–111.
Saedi, J., Sharifi, M. R., Saremi, A., and Babazadeh, H. (2022). Assessing the impact of climate change and human activity on streamflow in a semiarid basin using precipitation and baseflow analysis. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-13143-y.
Saleh, T. R. M., and Setiadi, H. (2020). Resilience of Flood Disasters in the Wanggu Watershed, Kendari City. In IOP Conference Series: Earth and Environmental Science (Vol. 436). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/436/1/012016.
Salinas-Rodríguez, S. A., Sánchez-Navarro, R., and Barrios-Ordóñez, J. E. (2021). Frequency of occurrence of flow regime components: a hydrology-based approach for environmental flow assessments and water allocation for the environment. Hydrological Sciences Journal, 66(2), 193–213. https://doi.org/10.1080/02626667.2020.1849705.
Samarasinghe, J. T., Basnayaka, V., Gunathilake, M. B., Azamathulla, H. M., and Rathnayake, U. (2022). Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin. Hydrology, 9(2), 1–17. https://doi.org/10.3390/hydrology9020039.
Sapan, E. G. A., Riandasenya, S. A. R., Yulianingsani, Anisah, Ilmi, M. K., and Habibie, M. I. (2022). Health assessment of the Upper Citarum Watershed, West Java, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1109). Institute of Physics. https://doi.org/10.1088/1755-1315/1109/1/012082.
Saputro, R., Sisno, S., and Juwono, P. (2021). Analysis Of Carrying Capacity of The Porong River Caused by Sidoarjo Mud Disposal. Civil and Environmental Science, 004(02), 192–201. https://doi.org/10.21776/ub.civense.2021.00402.9.
Shao, W., Su, X., Lu, J., Liu, J., Yang, Z., Cao, Y., Yang, Z., and Wang, K. (2021). The application of big data in the analysis of the impact of urban floods: A case study of Qianshan River Basin. Journal of Physics: Conference Series, 1955(1). https://doi.org/10.1088/1742-6596/1955/1/012061.
Sriyana, I. (2018). Evaluation of watershed carrying capacity for watershed management (a case study on Bodri watershed, Central Java, Indonesia). In MATEC Web of Conferences (Vol. 195). EDP Sciences. https://doi.org/10.1051/matecconf/201819505003.
Suprayogi, S., Widyastuti, M., Hadi, M. P., Christanto, N., Tivianton, T. A., Fadhilah, G. O., Rahmawati, L., and Fadlillah, L. N. (2022). Runoff Coefficient Analysis After Regional Development in Tambakbayan Watershed, Yogyakarta, Indonesia. Jurnal Ilmu Lingkungan, 20(2), 396–405. https://doi.org/10.14710/jil.20.2.396-405.
Suryono, N., Apriadi, Alawiyah, Pah, J. M., and Dewi, B. S. (2018). Analysis of Land Cover Changes to Flow Regime Coefficients and Surface Flow Conditions (Case Study in Bulok Watershed Sub Watershed …. In Proceeding of the Third SHIELD International Conference (pp. 211–220). Retrieved from http://repository.lppm.unila.ac.id/9251.
Susanto, W. (2019). The Relationship between Forest and Land Rehabilitation with the Quality and Health of Watershed. Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 3(3), 298–309. https://doi.org/10.36574/jpp.v3i3.91.
Tena, T. M., Nguvulu, A., Mwelwa, D., and Mwaanga, P. (2021). Assessing Water Availability and Unmet Water Demand Using the WEAP Model in the Semi-Arid Bweengwa, Kasaka and Magoye Sub-Catchments of Southern Zambia. Journal of Environmental Protection, 12(04), 280–295. https://doi.org/10.4236/jep.2021.124018.
Theron, S. N., Weepener, H. L., Le Roux, J. J., and Engelbrecht, C. J. (2021). Modelling potential climate change impacts on sediment yield in the Tsitsa river catchment, South Africa. Water SA, 47(1), 67–75. https://doi.org/10.17159/wsa/2021.v47.i1.9446.
T Marston, L., Lamsal, G., H Ancona, Z., Caldwell, P., D Richter, B., L Ruddell, B., R Rushforth, R., and Frankel Davis, K. (2020). Reducing water scarcity by improving water productivity in the United States. Environmental Research Letters, 15(9). https://doi.org/10.1088/1748-9326/ab9d39.
Thomaz, F. R., Miguez, M. G., de Souza Ribeiro de Sá, J. G., de Moura Alberto, G. W., and Fontes, J. P. M. (2023). Water Scarcity Risk Index: A Tool for Strategic Drought Risk Management. Water (Switzerland), 15(2). https://doi.org/10.3390/w15020255.
Tidwell, V. C., Moreland, B. D., Shaneyfelt, C. R., and Kobos, P. (2018). Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west. Environmental Research Letters, 13(1). https://doi.org/10.1088/1748-9326/aa9907
Touch, T., Oeurng, C., Jiang, Y., and Mokhtar, A. (2020). Integrated modeling of water supply and demand under climate change impacts and management options in tributary Basin of Tonle Sap Lake, Cambodia. Water (Switzerland), 12(9). https://doi.org/10.3390/w12092462.
Vercruysse, K., Grabowski, R. C., and Rickson, R. J. (2017). Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews, 166, 38–52. https://doi.org/10.1016/j.earscirev.2016.12.016.
Volpi, E., Di Lazzaro, M., Bertola, M., Viglione, A., and Fiori, A. (2018). Reservoir Effects on Flood Peak Discharge at the Catchment Scale. Water Resources Research, 54(11), 9623–9636. https://doi.org/10.1029/2018WR023866.
Wang, X., Zhang, P., Liu, L., Li, D., and Wang, Y. (2019). Effects of human activities on hydrological components in the Yiluo River Basin in Middle Yellow River. Water (Switzerland), 11(4). https://doi.org/10.3390/w11040689.
Wei, X., Cai, S., Ni, P., and Zhan, W. (2020). Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73939-8.
Winckler, P., Agredano, R., Esparza, C., Melo, O., and Mart, C. (2023). Projections of Beach Erosion and Associated Costs in Chile. Sustainability, 15(4), 1–23. https://doi.org/https://doi.org/10.3390/su15075883.
Winkler, R. D., Moore, R. D. D., Redding, T. E., Spittlehouse, D. L., Carlyle-moses, D. E., and Smerdon, B. D. (2010). Hydrologic Processes and Watershed Response. Compendium of Forest Hydrology and Geomorphology in British Columbia. BC Ministry of Forests and Range, Forest Science Program, Victoria, BC, and FORREX Forum for Research and Extension in Natural Resources, Kamloops, BC. Land Management Handbook, 133–178.
Xiong, J., Yin, J., Guo, S., He, S., Chen, J., and Abhishek. (2022). Annual runoff coefficient variation in a changing environment: A global perspective. Environmental Research Letters, 17(6). https://doi.org/10.1088/1748-9326/ac62ad.
Xue, D., Zhou, J., Zhao, X., Liu, C., Wei, W., Yang, X., … Zhao, Y. (2021). Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.107013.
Xu, W., Dong, Z., Hao, Z., Ren, L., Wang, W., and Li, D. (2019). Ecological flow regime and its satisfactory degree assessment based on an integrated method. Polish Journal of Environmental Studies, 28(5), 3959–3970. https://doi.org/10.15244/pjoes/97395.
Yuan, S., Li, Z., Chen, L., Li, P., Zhang, Z., Zhang, J., Wang, A., and Kunxia Yu. (2022). Effects of a check dam system on the runoff generation and concentration processes of a catchment on the Loess Plateau. International Soil and Water Conservation Research, 10(1), 86–98. https://doi.org/10.1016/j.iswcr.2021.06.007.
Zengin, H., Özcan, M., Degermenci, A. S., and Çitgez, T. (2017). Efectos de algunas características de las cuencas hidrográficas sobre el rendimiento hídrico en la región occidental del Mar Negro del norte de Turquía. Bosque, 38(3), 479–486. https://doi.org/10.4067/S0717-92002017000300005.
Zhang, J., Fu, Y., Peng, W., Zhao, J., and Fu, G. (2022). Interactive influences of ecosystem services and socioeconomic factors on watershed eco-compensation standard “popularization” based on natural based solutions. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12503.
Zhang, W., Du, X., Huang, A., and Yin, H. (2019). Analysis and comprehensive evaluation of water use efficiency in China. Water (Switzerland), 11(12). https://doi.org/10.3390/w11122620.
Zhang, Z., Hu, B., and Qiu, H. (2022, May 1). Comprehensive evaluation of resource and environmental carrying capacity based on SDGs perspective and Three-dimensional Balance Model. Ecological Indicators. Elsevier B.V. https://doi.org/10.1016/j.ecolind.2022.108788.
Zheng, F., Xiao, C., You, Z., and Feng, Z. (2022). Evaluating the Resources and Environmental Carrying Capacity in Laos Using a Three-Dimensional Tetrahedron Model. International Journal of Environmental Research and Public Health, 19(21). https://doi.org/10.3390/ijerph192113816.