The Effectiveness and Cost Optimization of Coagulant Aluminum Chlorohydrate (ACH), Aluminum Sulfate (AS), and Poly Aluminium Chloride (PAC) in Coagulation Process at The PT. Pupuk Sriwijaya (PT. Pusri) Utility Unit
Abstract
PT. Pusri utilizes Musi River water as a source of process water. Colloidal particles suspended in Musi River water can
cause blockage and build-up of scale on pipes and process equipment. Therefore, a good coagulation process is needed to reduce the content of colloidal solids suspended in water by using a coagulant. Coagulants that are often used for water treatment include ACH, AS, and PAC. The objectives of the study are to assess the eectiveness and to optimize the usage of the coagulant ACH, AS, and PAC on decreasing the turbidity of Musi River water sample as a raw water in utility unit of PT. Pusri. The coagulation process was carried out by varying the concentration of each coagulant and adding 0.1 ppm of coagulant aid for all samples. Fast and slow stirring was carried out each at a speed of 150 rpm 30 rpm for 10 minutes. From the experiments conducted, it was found that the most eective coagulants to be used were ACH and PAC with the addition of a smaller coagulant dose of 12 ppm to achieve the standard water quality used at PT. Pusri. Meanwhile, the use of AS has higher eciency when compared to ACH and PAC because it is more cost eective.
References
2. Altaher, H., Tarek, E. K., and Abubeah, R. (2016). An Agricultural Waste as a Coagulant Aid to Treat High Turbid Water Containing Humic Acids. Global NEST Journal, 8(2); 279-290.
3. Aziz, N., Effendi, N., Basuki, K. T., (2017). Comparison of Poly Aluminium Chloride (PAC) and Aluminium Sulphate Coagulants Efficiency in Waste Water Treatment Plant. Inovasi Teknik Kimia, 2(1); 24-31.
4. Aziz, H. A., Alias, S., Assari, F., and Adlan M. N. (2013). The Use of Alum, Ferric Chloride and Ferrous Sulfate as Coagulants in Removing Suspended Solids, Colour and COD from Semi-Aerobic Landfill Leachate at Controlled pH. Waste Management Research, 25(6); 556-565.
5. Choy, S.Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., Ramanan, R. N. (2014). Utilization of Plant-Based Natural Coagulants as Future Alternatives Towards Sustainable Water Clarification. Journal of Environmental Sciences, 26(11); 2178-2189.
6. Djamel Ghernaout. (2020). Water Treatment Coagulation: Dares and Trends. Scientific Research, 7(8);1-18.
7. Gebbie, P. (2006). An Operator’s Guide to Water Treatment Coagulants. Proceeding of 31 st Annual Old Water Industry Workshop - Operation Skills University Central Queensland, 14-20.
8. Huang, X., Gao, B., Yue, Q., Wang, Y., Li, Q., Zhao, S., Sun, S. (2013). Effect of Dosing Sequence and Raw Water pH on Coagulation Performance and Flocs Properties using Dual-Coagulation of Polyaluminum Chloride and Compound Bioflocculant in Low Temperature Surface Water Treatment. Chem. Eng. J, 229; 477-483.
9. Husaini., Cahyono, S. S., Suganal., dan Hidayat, K. N. (2018). Perbandingan Koagulan Hasil Percobaan dengan Koagulan Komersial Menggunakan Metode Jar Test. Jurnal Teknologi Mineral dan Batubara, 14(1); 31-45.
10. Khalid M. M., Hind J. H. (2016). Coagulation/Flocculation Process for Produced Water Treatment. International Journal of Current Engineering and Technology, 6(2); 551-555.
11. Kumar, N., Balasundaram, N. (2017). Efficiency of PAC in Water Treatment Plant and Disposal of Its Sludge. International Journal of Applied Engineering Research, 12(12); 3253-3262.
12. Lin, J., Couperthwaite, S. J., and Millar, G. J. (2017). Effectiveness of Aluminium Based Coagulants for Pre-Treatment of Coal Seam Water. Separation and Purification Technology, 177; 207-222.
13. Makki, H. F., Al-Alawy, A. F., Razaq, N. .N. A., and Mohammed, M. A. (2010). Using Aluminum Refuse as A Coagulant in The Coagulation And Floculation Processes. Journal of Chemical and Petroleum Engineering, 11(3); 15-22.
14. Margaretha, Mayasari, R. Syaiful, dan Subroto. (2012). Pengaruh Kualitas Air Baku Terhadap Dosis Dan Biaya Koagulan Aluminium Sulfat dan Poly Aluminium Chloride. Jurnal Teknik Kimia, 18(4); 22-30.
15. Martina, A., Effensy, D. S., dan Soetedjo, J. N. M. (2018). Aplikasi Koagulan Biji Asam Jawa dalam Penurunan Konsentrasi Zat Warna Drimaren Red pada Limbah Tekstil Sintetik pada Berbagai Variasi Operasi. Jurnal Rekayasa Proses, 12(2); 98-103.
16. Muwanto, B. (2018). Efekivitas Jenis Koagulan Poly Aluminium Chloride Menurut Vaiansi Dosis dan Waktu Pengadukan terhadap Penurunan Parameter Limbah Cair Industri Tahu. Jurnal Kesehatan, 9(1); 143-153.
17. Naceradska, J., Pivokonska, L., Pivokonsky, M. (2019). On the Importance of pH Value in Coagulation. Journal of Water Supply: Research and Technology-Aqua, 68(3); 222-230.
18. Nurjannah, R. (2015). Penentuan Kurva Standar Dosis Koagulan di PDAM Jember Unit Tegal Gede. Skripsi, Universitas Jember.
19. Prakash, N. B., Sockan, V., Jayakaran, P. (2014). Waste Water Treatment by Coagulation and Flocculation. International Journal of Engineering Science and Innovative Technology, 3(2); 479-484.
20. Rahimah, Z., Hekklawati, H., dan Sauqiah, I. (2016). Pengolahan Limbah Deterjen dengan Metode Koagulasi-Flokulasi Menggunakan Koagulan Kapur dan PAC. Jurnal Konversi, 5(2); 13-19.
21. Romadhon, M. R. (2016). Efektivitas Jenis Koagulan dan Doses Koagulan Terhadap Penurunan Kadar Kromium Limbah Peyamakan. Skripsi. Yogyakarta: Universitas Negeri Yogyakarta.
22. Rosariawari, F. dan Mirwan, M. (2013). Efektifitas PAC dan Tawas untuk menurunkan Kekeruhan Pada Air Permukaan. Envirotek: Jurnal Ilmiah Teknik Lingkungan, 5(1); 70-76.
23. Rosyidah, M. (2018). Analisis Pencemaran Air Sungai Musi Akibat Aktivitas Industri (Studi Kasus Kecamatan Kertapati Palembang). Jurnal Redoks, 3(1); 21-32.
24. Rui, L. M., Daud, Z., and Latif, A. A. A. (2012). Coagulation-Flocculation in Leachate Treatment Using Combination of PAC With Cationic and Anionic Polymers. International Journal of Engineering Research and Applications, 2(4); 1935-1940.
25. Rusydi, A. F., Suherman, D., dan Sumawijaya, N. (2017). Pengolahan Air Limbah Tekstil Melalui Proses Koagulasi-Flokulasi dengan Menggunakan Lempung Sebagai Penyumbang Parikel Tersuspensi. Jurnal Srena Tekstil, 31(2); 105-114.
26. Sohraby, Y., Rahimi, S., Nafez, A. H., Mirzaei, N., Bagheri, A., Ghadiri, S. K., Rezaei, S., Charganeh, S. S. (2018). Chemical Coagulation Efficiency in Removal of Water Turbidity (Review). International Journal of Pharmaceutical Research, 10(3);188-194.
27. Sillanpaa, M. Ncibi, M. C., Matilainen, A., Vepsalainen, M. (2018). Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere 190; 54-71.
28. Sutapa. I. D. A. (2014). Optimalisasi Dosis Koagulan Aluminium Slufat dan Polialuminium Klorida (PAC) untuk Pengolahan Air Sungai Tanjung dan Krueng Raya. Jurnal Teknik Hidraulik, 5(1); 29-42.
29. Yann, T., Miyanaga, K., Tan, R. (2021). The Effectiveness of Different Types of Polyaluminum Chloride (PAC) and Aluminum Sulfate (alum) with Ca(OCl)2 Dosing for Treatment of Surface Water of Tonle Sap River. Conference: The 13th AUN/SEED-Net Regional Conference on Chemical Engineering 2020.
30. Yan, M., Wang, D., Yu, J., Ni, J., Edwards, M., and Qu, J. (2008). Enhanced Coagulation with Polyaluminum Chlorides: Role of pH/Alkalinity and Speciation. Chemosphere, 71(9); 1665–1673.
31. Zan, A. D., and Hoveidi, H. (2015). Comparing Aluminium Sulfate and Poly-Aluminium Chloride (PAC) Performance. Journal of Applied Biotechnology Reports, 2(3); 287-292.
32. Zouboulis, A., Traskas, G., Samaras, P. (2008).Comparison of Efficiency between Poly-aluminium Chloride and Aluminium Sulphate Coagulants during Full-scale Experiments in a Drinking Water Treatment Plant. Separation Science and Technology, 43(6); 1507-1519.