Textile Dye Reactive Black 5 (RB5) Bio-Sorption with Moving Bed Biofilm Reactor and Activated Sludge

Main Article Content

I Wayan Koko Suryawan
Qomarudin Helmy
Suprihanto Notodarmojo
Riska Pratiwi
Iva Yenis Septiariva


Reactive Black 5 (RB5) is one of the dyes used in textile industries in Indonesia. However, the high color content can interfere with the condition of water bodies if not treated. This waste treatment process is usually treated with biological treatment processes. Biological processing often used is the MBBR unit and activated sludge. This study aims to determine the RB5 dye’s bio-sorption efficiency using MBBR processing and activated sludge. MBBR processing and activated sludge consist of seeding, acclimatization, and running stages. This research was carried out using a real textile wastewater approach by adding 100 mg/L RB5 and adding 1000 mg/L starch solution. The processing results of the seeding stage indicate increasing in biomass. The acclimatization stage with 50% and 75% of wastewater indicates increased biomass and color removal. The RB5 color removal efficiency results in the MBBR unit and activated sludge show 41% and 84% values. The MBBR processing shows fluctuations each time where the desorption process occurs in the color removal. For this reason, the ozone pre-treatment process is conducted in the MBBR unit. The integrated pre-treatment with MBBR results show the same fluctuation as the previous processing with a color removal efficiency of 43% with a color removal efficiency of 43%.

Article Details

How to Cite
Suryawan, I. W. K., Helmy, Q., Notodarmojo, S., Pratiwi, R., & Septiariva, I. Y. . (2021). Textile Dye Reactive Black 5 (RB5) Bio-Sorption with Moving Bed Biofilm Reactor and Activated Sludge. Indonesian Journal of Environmental Management and Sustainability, 5(2), 67-71. https://doi.org/10.26554/ijems.2021.5.2.67-71


Afifah, A. S., Suryawan, I. W. K., & Sarwono, A. (2020). Microalgae production using photo-bioreactor with intermittent aeration for municipal wastewater substrate and nutrient removal. Communications in Science and Technology, 5(2), 107-111. https://doi.org/10.21924/cst.5.2.2020.200

Aninda C., & Efi, A. (2019). Pengolahan ekstrak buah senggani senduduk (Melastoma candidum) menjadi zat pewarna tekstil. Jurnal Kapita Selekta Geografi, 2(5), 83-90. https://doi.org/10.24036/ksgeo.v2i5.270

Apritama, M. R., Suryawan, I. W. K., Afifah, A. S., & Septiariva, I. Y., (2020). Phytoremediation of effluent textile WWTP for NH3-N and Cu reduction using pistia stratiotes, Plant Archives, 20, pp. 2384-2388.

Bili?ska L., Gmurek M. & Ledakowicz, S. (2016). Comparison between industrial and simulated textile wastewater treatment by AOPs–biodegradability, toxicity and cost assessment. Chemical Engineering Journal, 306, 550-559. https://doi.org/10.1016/j.cej.2016.07.100

Castro, F. D., Bassin, J., & Dezotti, M. (2017). Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by a combination of ozonation and moving-bed biofilm reactor. Environmental Science and Pollution Research, 24(7), 6307-6316. https://doi.org/10.1016/j.ibiod.2010.08.004

Chang W. S., Hong S. W., & Park, J., (2002). Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter. Process Biochemistry, 37(7), 693-698. https://doi.org/10.1016/S0032-9592(01)00258-8

Fajrudin A., Supartono S., & Sumarni W., (2016). Pengaruh konsentrasi asam nitrat dan temperatur kalsinasi pada reaktivasi spent bleaching earth. Indonesian Journal of Chemical Science, 5(3), 202-205. https://journal.unnes.ac.id/sju/index.php/ijcs/article/view/9533

Gong X. B. (2016). Advanced treatment of textile dyeing wastewater through the combination of moving bed biofilm reactors and ozonation. Separation Science and Technology, 51(9), 1589-1597. https://doi.org/10.1080/01496395.2016.1165703

Indriyati I. (2011). Proses Pembenihan (seeding) dan aklimatisasi pada reaktor tipe fixed bed. Jurnal Teknologi Lingkungan, 4(2), 55-61. http://ejurnal.bppt.go.id/index.php/JTL/article/view/279

Kant, R., 2012. Textile dyeing industry an environmental hazard. Natural Science, 4(1), 20.

Kriswidatari, L., Suyasa I. B., & Siaka, I. M. (2017). Biodegradasi remazol briliant blue dalam sistem biofiltrasi vertikal dengan inokulum bakteri dari sedimen sungai mati imam bonjol Denpasar. ECOTROPHIC: Jurnal Ilmu Lingkungan (Journal of Environmental Science), 11(1), 8-14. https://doi.org/10.24843/EJES.2017.v11.i01.p02.

Metcalf Eddy, (1991). Wastewater Engineering Treatment, Disposal and Reuse. New York: McGraw Hill, Inc.

Oxford, (1994). Kamus Lengkap Kimia. Jakarta: Erlangga.

Park H. O., Oh S., Bade R. & Shin W. S. (2010). Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment. Korean Journal of Chemical Engineering, 27(3), 893-899. https://doi.org/10.1007/s11814-010-0143-5

Pratiwi R., Notodarmojo S. & Helmy Q. (2018). Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor. IOP Conference Series: Earth and Environmental Science, 106(1), 012089. https://doi.org/10.1088/1755-1315/106/1/012089

Pratomo, A. N. R., (2019). Sintesis Hidrotermal Nanopartikel ZnO Berbantuan Pektin dan aplikasinya sebagai fotokatalis penguraian biru metilena. Bogor Agricultural University. http://repository.ipb.ac.id/handle/123456789/99238

Rusten B., Eikebrokk, B. Ulgenes, Y. & Lygren E., (2006). Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultural engineering, 34(3), 322-331. https://doi.org/10.1016/j.aquaeng.2005.04.002

Safauldeen, S. H., Abu Hasan, H. & Abdullah, S. R. S., (2019). Phytoremediation efficiency of water hyacinth for batik textile effluent treatment. Journal of Ecological Engineering, 20(9), 177—187. https://doi.org/10.12911/22998993/112492

Sahel K., Perol N., Dappozze F., Bouhent M., Derriche Z., & Guillard, C. (2010). Photocatalytic degradation of a mixture of two anionic dyes: Procion Red MX-5B and Remazol Black 5 (RB5). Journal of Photochemistry and Photobiology A: Chemistry, 212(2-3), 107-112. https://doi.org/10.1016/j.jphotochem.2010.03.019

Septiariva, I. Y., Suryawan, I. W. K., Sari, N. K., & Sarwono, A. Impact of Salinity on Stabilized Leachate Treatment from Ozonation Process. Advances in Science, Technology and Engineering Systems Journal (ASTESJ), 5(6), 1511-1516.

Setiyanto, H., Agustina, D., Zulfikar, M., dan Saraswaty, V. (2016). Kajian reaksi fenton untuk degradasi senyawa remazol red b pada limbah industri tekstil. Molekul, 11, 168 – 179. https://doi.org/10.20884/1.jm.2016.11.2.212

Sofiyah, E. S., & Suryawan, I. W. K. (2021). Cultivation of Spirulina platensis and Nannochloropsis oculata for nutrient removal from municipal wastewater. Rekayasa, 14(1), 93-97.

Soltani T., & Entezari M. H., (2013). Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrasonics sonochemistry, 20(5), 1245-1253. https://doi.org/10.1016/j.ultsonch.2013.01.012

Suryawan, I. W. K., Prajati, G., Afifah, A. S., & Apritama, M. R. (2020). NH3-N and COD reduction in Endek (Balinese textile) wastewater by activated sludge under different DO condition with ozone pre-treatment. Walailak Journal of Science and Technology (WJST). http://wjst.wu.ac.th/index.php/wjst/article/view/9127

Suryawan, I. W., Septiariva, I. Y., Helmy, Q., Notodarmojo, S., Wulandari, M., Sari, N. K., . . . Jun-Wei, L. (2021). Comparison of Ozone Pre-Treatment and Post-Treatment Hybrid with Moving Bed Biofilm Reactor in Removal of Remazol Black 5. International Journal of Technology, 12(2).

Yanuartono H. P., Indarjulianto S., Nururrozi, A. Raharjo S., & Haribowo, N. (2019). Biological treatment by fungi to improve the quality of animal feed from agricultural by product. Jurnal Peternakan Sriwijaya, 8(2), 18-34. https://doi.org/10.33230/JPS.8.2.2019.10227