Energy Conversion of Industrial Wastewater on Microbial Fuel Cell (MFC)-Based with Biocatalysts and Pretreatments: A Review

Main Article Content

I Wayan Koko Suryawan
Iva Yenis Septiariva
Ariyanti Sarwono


The purpose of this review is to provide current information regarding industrial wastewater treatment with MFC technology with the addition of biocatalysts and pretreatments. Moreover, this review also updates industrial waste treatment technology with MFC technology in Indonesia. Waste could be generated from domestic activities as well as non-domestic activities, such as industries. Industries produce waste with quite high organic content. This organic material is not easily degraded in biological treatment. Wastewater treatment, currently, aims only to meet standards quality and not to reuse. In Indonesia, the reuse processes, one of which is still rarely found in the form of energy. Industries that can process and convert wastewater energy can help the government realize sustainable development in the energy sector. One of the technologies is the Microbial Fuel Cell (MFC). Previous MFC research that had been carried out was limited to laboratory scale with a volume of less than 1 L and, among them, used mixed or artificial waste. MFC processing uses anode in wastewater as a substrate source and generates electrons under anaerobic conditions. Electron formation could be accelerated by adding biocatalysts such as enzymes and specific microorganisms. The processing occurred in an anaerobic anode that could be increased by increasing the substrate's biodegradability value in the waste. The biodegradability value can be increased by pretreatment with ozone or ultrasonic technology. In Indonesia, research on industrial wastewater treatment with MFC as well as biocatalyst and pretreatment is still relatively minimal.

Article Details

How to Cite
Suryawan, I. W. K., Septiariva, I. Y., & Sarwono, A. (2020). Energy Conversion of Industrial Wastewater on Microbial Fuel Cell (MFC)-Based with Biocatalysts and Pretreatments: A Review. Indonesian Journal of Environmental Management and Sustainability, 4(4), 102-109.


Ali, M., & Widodo, A. A. (2019). Biokonversi Bahan Organik pada Limbah Cair Rumah Pemotongan Hewan menjadi Energi Listrik menggunakan Microbial Fuel Cell. ENVIROTEK: Jurnal Ilmiah Teknik Lingkungan, 11(2), 30-37.

Apritama, M. R., Suryawan, I. W., Afifah, A. S., & Septiariva, I. Y. (2020). Phytoremediation Of Effluent Textile WWTP For NH3-N And Cu Reduction Using Pistia Stratiotes. Plant Archives, 20 (Supplement 1), 2384-2388.

Aswin, T., Sabarunisha, B., & Sikkandar, Y. (2017). Optimization of Microbial Fuel Cell for Treating Industrial Wastewater and Simultaneous Power Generation. Int J Chem Sci. 2017;15(2):132. Int. J. Chem. Sci, 15, 132.

Babanova, S., Carpenter, K., Phadke, S., Suzuki, S., Ishii, S., Phan, T., . . . Bretschger, O. (2017). The Effect of Membrane Type on the Performance of Microbial Electrosynthesis Cells for Methane Production. J. Electrochem. Soc., 164, H3015-H3023.

Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., & Logan, B. (2009). A New Method for Water Desalination Using Microbial Desalination Cells. Environ. Sci. Technol., 43, 7148-7152.

Dewan, A., Ay, S., Karim, M., & Beyenal, H. (2014). Alternative power sources for remote sensors: a review. J. Power Sources, 245, 129-143.

Escapa, A., Mateos, R., Martínez, E., & Blanes. (2016). Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. J. Renew. Sustain. Energy Rev., 55, 942-956.

Ewing, T., Babauta, J., Atci, E., Tang, N., Orellana, J., Heo, D., & Beyenal, H. (2014). Self-powered wastewater treatment for the enhanced operation of a facultative lagoon. J. Power Sources, 269, 284-292.

Fapetu, S., Keshavarz, T., Clements, M., & Kyazze, G. (2016). Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst. Biotechnology Letters, 38, 1465–1473.

Fazli, N., Mutamim, N. S., Jafri, N. M., & Ramli, N. A. (2018). Microbial Fuel Cell (MFC) in treating spent caustic wastewater: Varies in Hydraulic Retention Time (HRT) and Mixed Liquor Suspended Solid (MLSS). Journal of Environmental Chemical Engineering, 6, 4339-4346.

Feng, Y., Wang, X., Logan, B., & Lee, H. (2008). Brewery wastewater treatment using air cathode microbial fuel cells, . Appl. Microbiol. Biotechnol., 78, 873–880.

Fua, L., Youb, S.-J., Zhanga, G.-q., Yanga, F.-L., & F. X.-h. (2010). Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chemical Engineering Journal, 160, 164–169.

Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Bioelectrochem, 104, 58-64.

Ge, Z., Wu, L., Zhang, F., & He, Z. (2015). Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J. Power Sources, 297, 260-264.

Guo, W., Wu, Q., Yang, S., & Peng, S. (2014). The promising resource utilization methods of excess sludge: a review. Appl Mech Mater , 777–81.

Haslett, N. D. (2012). Development of a eukaryotic microbial fuel cell using Arxula adeninivorans. New Zealand: Doctoral dissertation: Lincoln University.

Ibrahim, B., & Soleh, A. M. (2020). Kinerja membran komposit kitosan-karagenan pada sistem microbial fuel cell dalam menghasilkan biolistrik dari limbah pemindangan ikan. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(1), 137-146.

Ibrahim, B., Suptijah, P., & Adjani, Z. N. (2017). Kinerja microbial fuel cell penghasil biolistrik dengan perbedaan jenis elektroda pada limbah cair industri perikanan. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 296-304.

Ieropoulos, I., Ledezma, P., Stinchcombe, A., Papaharalabos, G., & Melhuish, C. C. (2013). J. Greenman, Phys. Chem. , 15 , 15312-15316.

Ieropoulos, I., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., . . . Greenman, J. (2016). Environ. Sci. Water Res. Technol, 2, 336-343.

Jiang, J., Zhao, Q., Wei, L., Wang, K., & Lee, D.-J. (2011). Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource Technology, 102, 272–277.

Kadier, A., Simayi, Y., Peyman-Abdeshahian, Farhana-Azman, N., Chandrasekhar, K., Sahaid-Kalil, M., & Alex. (2016). Eng. J. , 55, 427-443.

Kamil, K. (2012). Energy for sustainable development: A case of developing countries. Renewable and Sustainable Energy Reviews, 16, 1116 – 1126.

Kannaiah Goud, R., & Venkata Mohan, S. (2011). Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (MFC). International Journal of Hydrogen Energy, 36, 13753–13762.

Khaled, F., Ondel, O., & Allard, B. (2016). Microbial fuel cells as power supply of a low-power temperature sensor. J. Power Sources, 306, 354-360.

Kondaveeti, S., Lee, J., Kakarla, R., Kim, H., & Min, B. (2014). Low-cost separators for enhanced power production and fieldapplication of microbial fuel cells (MFCs). Electrochim. Acta, 132, 434–440.

Li, C., Wang, L., Wang, X., Kong, M., Zhang, Q., & Li, G. (2017). Synthesis of PVDF-g-PSSA proton exchange membrane by ozone-induced graft copolymerization and its application in microbial fuel cells. Journal of Membrane Science, 527, 35–42.

Logan, B. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85, 1665-1671.

Logan, B., Aelterman, P., Hamelers, B., Rozendal, R., Schr€oeder, U., Keller, J., . . . Rabaey, K. (2006). Environ. Sci. Technol. , 40, 5181-5192.

Marshall, C., Ross, D., Fichot, E., Norman, R., & May, H. (2013). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol., 47, 6023-6029.

Martinez-Duart, J., Hernandez-Moro, J., Serrano-Calle, S., Sez-Calvet, R., & Casanova-Molina, M. (2015;). New frontiers in sustainable energy production and storage. Vacuum, 122(Part B, 369–75.

Mohan, S. V., Raghavulu, S., Peri, D., & Sarma, P. (2009). Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatmentsystem associated with bioelectricity generation under higher substrate load. Biosensors and Bioelectronics, 24, 2021-2027.

Mohanakrishna, G., Abu-Reesh, I. M., & Al-Raoush, R. (2018). Biological anodic oxidation and cathodic reduction reactions for improved bioelectrochemical treatment of petroleum refinery wastewater. Journal of Cleaner Production, 190, 44–52.

Mohanakrishna, G., Abu-Reesh, I. M., Kondaveeti, S., Al-Raoush, R. I., & He, Z. (2018). Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell. Bioresource Technology, 253, 16–21.

Mohd Yusoff, M. Z., Hu, A., Feng, C., Maeda, T., Shirai, Y., Hassan, M. A., & Yu, C.-P. (2013). Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. . Bioresource Technology,, 145, 90–96.

Pandey, P. S., Deopurkar, R., Kale, S., Patil, S., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy, 168, 706-723.

Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101, 1533-1543.

Pietrelli, A., Micangeli, A., Ferrara, V., & Raffi, A. (2014). Sustainability, 6, 7263-7275.

Potter, M. (1911). Electrical effects accompanying the decomposition of organic. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84.

Pramono, K. J., Wardana, K. A., & Asthary, P. B. (2015). Biokonversi Pada Pengolahan Air Limbah Industri Pulp Dan Kertas Menggunakan Membrane-Less Microbial Fuel Cell (ML-MFC). Jurnal Selulosa, 5(1).

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S.-E. (2015). Microbial fuel cell as new technology for bioelectricity generation: a review. Alex. Eng. J., 54, 745-756.

Ramadan, B., & Purwono. (2017). Challenges and opportunities of microbial fuel cells (MFCs) technology development in Indonesia. MATEC Web of Conferences, 101, 02018 .

Safitri, U. N., Anggo, A. D., & Fahmi, A. S. (2020). KINERJA SEDIMENT MICROBIAL FUEL CELL PENGHASIL LISTRIK DENGAN NUTRIEN LIMBAH INDUSTRI FILET IKAN. Jurnal Ilmu dan Teknologi Perikanan, 2(1), 20-28.

Salvi, B., & Subramanian, K. (2015). Sustainable development of road transportation sector using hydrogen energy system. Renew Sustain Energy Rev, 51, 1132–55.

Schievano, A., Colombo, A., Grattieri, M., Trasatti, S., Liberale, A., Tremolada, P., . . . Cristiani, P. (2017). Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J. Power Sources, 340, 80-88.

Sivagami, A., Al Imran, J., & Thamilarasan, S. (2015). Harvesting electricity from wastage. Int J Appl Eng Res, 10, 19310–6.

Srikanth, S., Kumar, M., Singh, D., Singh, M. P., & Das, B. P. (2016). Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation. Bioresource Technology,, 221, 70–77.

Sukkasem, C., & Laehlah, S. (2013). Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters. Bioresource Technology, 146, 749–753.

Sulistiyawati, I., Rahayu, N. L., & Purwitaningrum, F. S. (2020). Produksi Biolistrik Menggunakan Microbial Fuel Cell (MFC) Lactobacillus bulgaricus dengan Substrat Limbah Tempe dan Tahu. Majalah Ilmiah Biologi BIOSFERA: A Scientific Journal,, 37(2).

Suryawan, I. W., Afifah, A. S., & Prajati, G. (2019). Pretreatment of endek wastewater with ozone/hydrogen peroxide to improve biodegradability. AIP Conference Proceedings, 2114(1), 050011.

Suryawan, I. W., Prajati, G., Afifah, A. S., & Apritama, M. R. (2020). NH3-N and COD reduction in Endek (Balinese textile) wastewater by activated sludge under different DO condition with ozone pretreatment. Walailak Journal of Science and Technology (WJST).

Syahri, M., Mahargiani, T., & Indrabrata, A. G. (2019). Teknologi Bersih Microbial Fuel Cell (MFC) dari Limbah Cair Tempe Sebagai Sumber Energi Listrik Terbarukan. Seminar Nasional Teknik Kimia Kejuangan, 5.

Tender, L., Gray, S., Groveman, E., Lowy, D., Kauffman, P., Melhado, J., . . . Dobarro, J. (2008). The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J. Power Sources, 179, 571-575.

Trapero, J., Horcajada, L., Linares, J., & Lobato, J. (2016). Is microbial fuel cell technology ready? An economic answer towards industrial commercialization.

Tremblay, P.-L., & Zhang, T. (2015). Electrifying microbes for the production of chemicals. Front. Microbiol., 6, 201.

Van Eerten-Jansen, M., Ter Hejne, A., Buisman, C., & Hamelers, H. (2012). Microbial electrolysis cells for production of methane from CO2: long?term performance and perspectives. Int. J. Energy Res., 36, 809-819.

Velvizhi, G., & Venkata Mohan, S. (2012). Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. International Journal of Hydrogen Energy, , 37, 5969–5978.

Villano, M. M., Aulenta, F., & Majone, M. (2011). Electrochemically assisted methane production in a biofilm reactor. J. Power Sources, 196, 9467-9472.

Walter, X., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2016). Applied Energy,

Xafenias, N., & Mapelli, V. (2014). Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int. J. Hydrogen Energy, 39, 21864-21875.

Yogaswara, R., Farha, A., Khairunnisa, & Pusfitasari, M. G. (2017). Studi penambahan mikroorganisme pada substrat limbah pome terhadap kinerja microbial fuel cell. Jurnal Teknik Kimia, 12, 14-18.

Zhang, F., & He, Z. (2015). Scaling up microbial desalination cell system with a post-aerobic treatment process for simultaneous wastewater treatment and seawater desalination. Desalination, 360, 28-34.