Alternative scenarios to utilise excess biogas in Palm Oil Mill

Main Article Content

Novelita Wahyu Mondamina
Deni Rachmat
Mochammad Waris Tegar Laksono

Abstract

Palm Oil Mill is a factory which converts Fresh Fruit Bunch (FFB) to Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). Within FFB converting processes, two types of waste are produced: 1)liquid waste and 2)solid waste. Liquid waste, named Palm Oil Mill Effluent (POME), contributes up to 60% of total FFB. Solid waste includes palm kernel shell and meal, fibre and empty fruit bunch gives in aggregate around 20% of total FFB. Initially, Palm kernel shell (PKS) is commonly utilised as fuel for boiler. Then in some mills, POME was additionally used as biomass for biofuel production (biogas) to support power supply in the mill. Biogas is utilised to generate electricity for Kernel Crushing Plant (KCP). Field observation data shows that electricity demand for KCP is 19.5 MWh/day or equivalent with 45% of total biogas production. The excess biogas, equivalent with 11,000 kWh/day, is flared. An alternative scenario instead of flaring is to use biogas as fuel for boiler. Thus, the previous fuel (PKS) could potentially be allocated for selling. Another scenario is to utilise excess biogas electricity generation to be distributed to staff houses near the mill. Therefore, this research study aims to calculate excess biogas that could be used for those scenarios: 1)Fuel substitution in the mill with different type of process, 2)Household electricity. Result shows that biogas demand in each scenario can supply 1) Minimum 2,900 kWh/day for non-processing hours and 6,436.65 kWh/day for processing hours, 2) Electricity for 557 houses/day.

Article Details

How to Cite
Mondamina, N. W., Rachmat, D., & Laksono, M. W. T. (2020). Alternative scenarios to utilise excess biogas in Palm Oil Mill. Indonesian Journal of Environmental Management and Sustainability, 4(2), 48-54. https://doi.org/10.26554/ijems.2020.4.2.48-54
Section
Articles

References

GAPKI, ‘Refleksi Industri Kelapa Sawit 2019 dan Prospek 2020’, Indonesian Palm Oil Association (GAPKI IPOA), Feb. 06, 2020. https://gapki.id/news/16190/refleksi-industri-kelapa-sawit-2019-dan-prospek-2020 (accessed Apr. 01, 2020).

E. Hambali and M. Rivai, ‘The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030’, IOP Conference Series: Earth and Environmental Science, vol. 65, p. 012050, May 2017, doi: 10.1088/1755-1315/65/1/012050.

A. Rajani, Kusnadi, A. Santosa, A. Saepudin, S. Gobikrishnan, and D. Andriani, ‘Review on biogas from palm oil mill effluent (POME): Challenges and opportunities in Indonesia’, IOP Conf. Ser.: Earth Environ. Sci., vol. 293, p. 012004, Jul. 2019, doi: 10.1088/1755-1315/293/1/012004.

R. P. Singh, M. H. Ibrahim, N. Esa, and M. S. Iliyana, ‘Composting of waste from palm oil mill: a sustainable waste management practice’, Rev Environ Sci Biotechnol, vol. 9, no. 4, pp. 331–344, Dec. 2010, doi: 10.1007/s11157-010-9199-2.

A. S. Rahayu, D. Karsiwulan, and H. Yuwono, Handbook POME-to-Biogas Project Development in Indonesia. Winrock International, 2015.

V. Miller, ‘Why we flare’, 2016. http://large.stanford.edu/courses/2016/ph240/miller1/.

M. Thurber, ‘Gas Flaring: Why does it happen and what can stop it? - Energy For Growth’, 2019. https://www.energyforgrowth.org/memo/gas-flaring-why-does-it-happen-and-what-can-stop-it/ (accessed May 27, 2020).

A. Enström, T. Haatainen, A. Suharto, M. Giebels, and K. Y. Lee, ‘Introducing a new GHG emission calculation approach for alternative methane reduction measures in the wastewater treatment of a palm oil mill’, Environ Dev Sustain, vol. 21, no. 6, pp. 3065–3076, Dec. 2019, doi: 10.1007/s10668-018-0181-4.

A. Pertiwiningrum, A. W. Harto, M. A. Wuri, and R. Budiarto, ‘Assessment of Calorific Value of Biogas after Carbon Dioxide Adsorption Process Using Natural Zeolite and Biochar’, IJESD, vol. 9, no. 11, pp. 327–330, 2018, doi: 10.18178/ijesd.2018.9.11.1123.

S. Jayakumar, M. M. Yusoff, M. H. Ab. Rahim, G. P. Maniam, and N. Govindan, ‘The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia’, Renewable and Sustainable Energy Reviews, vol. 72, pp. 33–47, May 2017, doi: 10.1016/j.rser.2017.01.002.

P. E. Poh and M. F. Chong, ‘Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment’, Bioresource Technology, vol. 100, no. 1, pp. 1–9, Jan. 2009, doi: 10.1016/j.biortech.2008.06.022.

Svenskt gastekniskt center, Basic data on biogas. Malmö: Svenskt gastekniskt center, 2012.

Departemen Pertanian, ‘Pedoman Pengelolaan Limbah Industri Sawit’. 2006.

Menteri Negara Lingkungan Hidup, ‘Peraturan Menteri Negara Lingkungan Hidup No 3/2010 Tentang Baku Mutu Air Limbah Bagi Kawasan Industri’. 2010.

Menteri Negara Lingkungan Hidup, ‘Keputusan Menteri Negara Lingkungan Hidup No Kep-51/MENLH/10/1995 Tentang Baku Mutu Limbah Cair Bagi Kegiatan Industri’. 1995.

I. B. Rahardja, ‘Identifikasi Konsumsi Energi Listrik di Pabrik Kelapa Sawit’, http://bumn.go.id/, 2012. http://bumn.go.id/ptpn5/berita/4592 (accessed May 27, 2020).

A. T. Yuliansyah, T. Hirajima, and Rochmadi, ‘Development of the Indonesian Palm Oil Industry and Utilization of Solid Waste’, Journal of the Mining and Materials Processing Institute of Japan, vol. 125, no. 12, pp. 583–589, 2009, doi: 10.2473/journalofmmij.125.583.

L. Parinduri, ‘Analisa Pemanfaatan Pome Untuk Sumber Pembangkit Listrik Tenaga Biogas Di Pabrik Kelapa Sawit’, Journal of Electrical Technology, vol. 3, no. 3, pp. 180–183, Oktober 2018.

A. Benato, A. Macor, and A. Rossetti, ‘Biogas Engine Emissions: Standards and On-Site Measurements’, Energy Procedia, vol. 126, pp. 398–405, Sep. 2017, doi: 10.1016/j.egypro.2017.08.278.

Most read articles by the same author(s)